【センター速報】数学ⅠA分析+アドバイス | 東進ハイスクールJR奈良駅前校|奈良県

校舎からのお知らせ

2017年 1月 15日 【センター速報】数学ⅠA分析+アドバイス

◆設問別分析

【第1問】数と式・集合と命題・2次関数    
[1] (数と式)
式の展開を利用して、式の値を次々と求めさせる問題。3次式の因数分解自体は数学IIの範囲であるが、展開した式の一部が与えられているので、係数を丁寧に比較して計算できれば容易。

[2] (集合と命題)
必要条件・十分条件を答えさせる問題と、命題の真偽を答えさせる問題。条件の否定と、2つの条件の「かつ」「または」を正しく把握できたかがポイント。

[3] (2次関数)
放物線の頂点のx座標およびy座標の最小値を求めさせる問題。平方完成をミスなくこなせるかがカギとなる。y座標では、変数の変域に注意する必要がある。

【第2問】図形と計量・データの分析    
[1](図形と計量)
余弦定理、正弦定理、三角形の面積の公式を用いる計量問題。用いる事項は基本的だが、計算がやや煩雑であるので、ミスしないように注意したい。

[2] (データの分析)
スキージャンプのデータをもとにした相関の読み取り、分散・共分散・相関係数の比較、ヒストグラムと箱ひげ図の読み取りを問う問題。分散や相関係数、四分位範囲などの定義をしっかり把握していれば、容易。

【第3問】場合の数と確率
A,B,Cの2人で順番にくじを引く問題である。3人のうちの2人を指定し、その2人のうちの少なくとも1人が当たりくじを引く確率を考える。事象を3つの排反な事象に分割し、選択肢から当てはまる3つの事象を選ぶ問題では、ベン図を描いたりして、排反な事象に正確に分けられたかどうかがポイント。3種類の条件付き確率の大小関係を答える問題もあった。

【第4問】整数の性質
一部の桁の数を隠して、与えられた性質から隠された数を求める問題である。4の倍数、9の倍数の判定方法を利用できたかがポイントである。最後の設問の、正の約数の積を2進法で表したときの末尾に0が連続していくつ並ぶかを答えさせる問題は、10進法の場合の10で割り切れる回数を考えてから、2で割り切れる回数を考えると分かりやすい。


【第5問】図形の性質   
三角形と円に関する問題であり、内容は標準的である。方べきの定理やメネラウスの定理を利用して計算していくことになる。三角形の内心に関する問題も出題されたが、角の二等分線と比の関係を2回利用することに気づけるかがポイント。
 

◆学習アドバイス

センター試験の数学I・Aでは、その年の問題の難易度変化に関わらず高得点が求められると考えて準備しておく必要があります。数学I・Aは、高校数学の土台ともいうべき分野なので、センター試験においても基本の理解を問う出題が多くなっています。大切なのは、基本を早期に確実に理解し、問題演習を繰り返し限られた時間内で正答を確実に導く力を作ることです。
各分野毎に学習していく上で重要なポイントは以下の通りです。

◆数と式
絶対値記号を中の符号で場合分けして外す、代入計算を式変形によって行う、複数の不等式をすべて満たす範囲を数直線を用いて考える、などといった基本動作を確実にできるようにしましょう。また、必要条件か十分条件の判定は、集合の包含関係や数直線を用いて視覚的に捉えることが有効です。覚えるのではなく理解に努めることが大切で、一度理解してしまえば、確実に得点できる分野です。勘に頼ることなく、命題の真偽から考える習慣を普段からしっかりと身につけましょう。

◆2次関数
グラフを描きイメージしながら解き進められるかがポイントです。2次関数のグラフが軸を中心として線対称であることを利用した最大・最小問題、2次関数のグラフと2次方程式・不等式の解の相互間の言い換えなどをグラフを描いて考える習慣を身につけましょう。

◆図形と計量
正弦定理や余弦定理など、三角比の基本公式を身につけることが最も重要です。それに加えて、常に図形問題では自分で図を描いて考えることが基本です。なるべく大きく図を描き、解き進めていく中で分かった長さなどの情報を書き込んでいく習慣を身につけましょう。

◆データの分析
多くの用語が出てくるので、まずはそれぞれの用語の定義を正しく覚えることが重要です。用語の定義を正確に覚えた上で、代表値などの値の計算、そして度数分布表や箱ひげ図、散布図などからデータの特徴を読み取る練習を重ねましょう。

◆場合の数と確率
公式に頼るのではなく、樹形図などから数え上げの原理を理解することが極めて重要です。併せて他分野以上に状況を言い換える力も求められます。考え方を理解しながら学習しましょう。

◆整数の性質
約数・倍数の考え方、ユークリッドの互除法、不定方程式の解、n進法の考え方を理解したうえで、論理的に解き進めていく力が必要になります。日頃の学習では、一つ一つの式変形の意味を明確にしながら解き進めることを繰り返しましょう。

◆図形の性質
三角形や円の性質を図と合わせてきちんと理解しているかが重要です。図形と計量と同様、図を描いて等しい角や長さ、相似などを見抜くことができるように練習を重ねましょう。

各分野を効率よく学習するには、いきなり入試レベルの問題に取り組むのではなく、教科書の例題、練習問題、節末問題、章末問題レベルへと、少しずつステップアップしていくのが一番の近道です。「計算を最後までやり抜く」「図やグラフを描いて考える」といった基本的なことを地道に積み重ねることによって、確固たる実力を身につけましょう。また、解法の暗記に頼るのではなく、公式や解法の原理をきちんと理解してから先に進むような勉強を心がけましょう。物事を理解するとは、その道理や筋道がわかり、自ら考えることができるようになることです。理解して先に進むような勉強を繰り返すことで、受験だけでなく、将来社会に出てからも役立つ本当の力をつけることができます。

東進では全国統一高校生テストを含めて年6回実施される「センター試験本番レベル模試」があります。センター試験の傾向や自分の現在の力を知り、さらに不得意分野、弱点を明確にしてセンター試験対策を早期に進めましょう。