【センター速報】数学ⅠA学習分析+アドバイス | 東進ハイスクールJR奈良駅前校|奈良県

校舎からのお知らせ

2018年 1月 15日 【センター速報】数学ⅠA学習分析+アドバイス

◆設問別分析

【第1問】 数と式・集合と命題・2次関数    
[1](数と式)
誘導で与えられた等式と式の置き換えを利用して式変形を行い、整式Aの値を求めさせる問題。誘導の等式でn=0、1、2を代入した形がAに現れていることに着目して式変形を行う。誘導の意図を素早く読み取れたかがポイント。
[2](集合と命題)
前半は、3つの集合A、B、C間の包含関係、共通部分、和集合に関する正誤の組み合わせを答える問題。後半は、xの不等式の解に関して、必要条件・十分条件の判定を行う問題。どちらも、集合の要素やxの範囲を具体的に書き出せるので、落ち着いて取り組めば難は無い。
[3](2次関数)
2次関数の最大値・最小値問題である。最高次の係数に文字aが含まれていることから、計算が少々煩雑になる。最大値・最小値を求める考え方自体は標準的なものである。

【第2問】 図形と計量・データの分析    
[1](図形と計量)
四角形の辺と対角線の長さが与えられたときの図形の計量を行う問題。四角形が台形になったときに辺の長さと垂線の長さを比較することで、平行な辺の組を求めさせる問題は目新しい。
[2](データの分析)
前半は、種目別・男女別の身長および体重に関するヒストグラム、箱ひげ図、散布図から読み取れることがらの正誤判定をさせる問題。後半は、2つのデータの偏差の積の和を式変形させる問題。中央値、四分位範囲、四分位数など、基本的な用語の意味が正しく理解できているかがポイント。
【第3問】 場合の数と確率 (選択問題)
大小2個のさいころを投げて出る目について、3つの事象A,B,Cが与えられており、それらを利用した条件付き確率を求めたりする問題。出る目は全部で36通りしかないことから、全て書き出す方法でも時間はかからないであろう。2つの事象B,Cが同時に起こらないことに気づき、それを利用できるかどうかがポイントである。
【第4問】 整数の性質 (選択問題)
144を素因数分解し、その正の約数の個数を求める問題、そして144を係数にもつ一次不定方程式の整数解を求める問題、そしてその結果を利用して、正の約数の個数から元の数を求める問題である。数値計算も難しくないので、直接数値を入れてみて検証するような方法でも時間はかからないだろう。
【第5問】 図形の性質 (選択問題)   
三角形と円が絡んだ問題であり、方べきの定理やメネラウスの定理を利用して長さや比を計算していく。角の二等分線の性質から、内分比などが計算できる。長さの比の大小関係を比較することで、交点が図形のどちらの側にできるのかを問う問題は目新しい。

 

◆学習アドバイス
センター試験の数学I・Aでは、その年の問題の難易度変化に関わらず高得点が求められると考えて準備しておく必要があります。数学I・Aは、高校数学の土台ともいうべき分野なので、センター試験においても基本の理解を問う出題が多くなっています。大切なのは、基本を早期に確実に理解し、問題演習を繰り返し限られた時間内で正答を確実に導く力を作ることです。
各分野毎に学習していく上で重要なポイントは以下の通りです。

◆数と式
絶対値記号を中の符号で場合分けして外す、代入計算を式変形によって行う、複数の不等式をすべて満たす範囲を数直線を用いて考える、などといった基本動作を確実にできるようにしましょう。また、必要条件か十分条件かの判定は、集合の包含関係や数直線を用いて視覚的に捉えることが有効です。覚えるのではなく理解に努めることが大切で、一度理解してしまえば、確実に得点できる分野です。勘に頼ることなく、命題の真偽から考える習慣を普段からしっかりと身につけましょう。
◆2次関数
グラフを描きイメージしながら解き進められるかがポイントです。2次関数のグラフが軸を中心として線対称であることを利用した最大・最小問題、2次関数のグラフと2次方程式・不等式の解の相互間の言い換えなどをグラフを描いて考える習慣を身につけましょう。
◆図形と計量
正弦定理や余弦定理など、三角比の基本公式を身につけることが最も重要です。それに加えて、常に図形問題では自分で図を描いて考えることが基本です。なるべく大きく図を描き、解き進めていく中で分かった長さなどの情報を書き込んでいく習慣を身につけましょう。
◆データの分析
多くの用語が出てくるので、まずはそれぞれの用語の定義を正しく覚えることが重要です。用語の定義を正確に覚えた上で、代表値などの値の計算、そして度数分布表や箱ひげ図、散布図などからデータの特徴を読み取る練習を重ねましょう。
◆場合の数と確率
公式に頼るのではなく、樹形図などから数え上げの原理を理解することが極めて重要です。併せて他分野以上に状況を言い換える力も求められます。考え方を理解しながら学習しましょう。
◆整数の性質
約数・倍数の考え方、ユークリッドの互除法、不定方程式の解、n進法の考え方を理解したうえで、論理的に解き進めていく力が必要になります。日頃の学習では、一つ一つの式変形の意味を明確にしながら解き進めることを繰り返しましょう。
◆図形の性質
三角形や円の性質を図と合わせてきちんと理解しているかが重要です。図形と計量と同様、図を描いて等しい角や長さ、相似などを見抜くことができるように練習を重ねましょう。

各分野を効率よく学習するには、いきなり入試レベルの問題に取り組むのではなく、教科書の例題、練習問題、節末問題、章末問題レベルへと、少しずつステップアップしていくのが一番の近道です。「計算を最後までやり抜く」、「図やグラフを描いて考える」といった基本的なことを地道に積み重ねることによって、確固たる実力を身につけましょう。また、解法の暗記に頼るのではなく、公式や解法の原理をきちんと理解してから先に進むような勉強を心がけましょう。物事を理解するとは、その道理や筋道がわかり、自ら考えることができるようになることです。理解して先に進むような勉強を繰り返すことで、受験だけでなく、将来社会に出てからも役立つ本当の力をつけることができます。

東進では全国統一高校生テストを含めて年6回実施される「センター試験本番レベル模試」があります。センター試験の傾向や自分の現在の力を知り、さらに不得意分野、弱点を明確にしてセンター試験対策を早期に進めましょう。

◆【申込開始!!】東進の学習システムを体感!!新年度特別招待講習!!

◆2017年度入試JR奈良駅前校合格速報(第3弾)

*画像をクリックすると合格体験記詳細へ移ります。


◆JR奈良駅前校をweb見学!!!

*画像をクリックすると校舎内詳細へ移ります。

◆卒業生の声!!!

◆JR奈良駅前校は直営校・現役大学受験専門校舎です!!